Phytoremediation, a novel method for removal of heavy metals from environment: biochemical and molecular mechanisms

Shivendra V. Sahi, Ph.D.

Department of Biology
Western Kentucky University
(shiv.sahi@wku.edu)

Outline

- Phytoremediation
- Sesbania drummondii
 - Metal (Pb) uptake
 - Microscopic evidence of metal transport
 - Biotransformation of toxic compounds
 - Gene identification/expression
 - Conclusion

Phytoremediation

Use of vegetation for the *in situ* treatment of contaminated sites

- A fast emerging environmental clean up strategy
- Immense promise for remediation of contaminated sites (soil, ground water, waste water)
- Effective against
 - inorganic (toxic metals and nutrients)
 - organic pollutants (BTEX)
 - chlorinated solvents, ammunition wastes

Phytoextraction Postharvest processing / concentration **Process** (microbial, thermal, or chemical) Harvest Reclamation or disposal ? Translocation to harvestable fraction Soil amendments increase availability Root uptake of contaminant to root uptake

Background

- 1980 Statute recognized over 40,000
 Superfund sites endangering human health
- Mining and smelting, municipal wastes, sewage sludge, landfill leachates, fertilizers, pesticides, nuclear accidents
- >10,000 sites remain active today (Superfund Accomplishment Figures-FY 2003)
- 40% of these sites have problems of heavy metal (Pb, Cd, Cr, As, Zn etc.) contamination

Conventional remediation strategies against metal contaminations

- Excavation and reburial of contaminated soils to another site
- Soil flushing/washing
- Solidification/stabilization
- Vitrification
- Electro-kinetics

Cost Analysis

- Conventional engineering technology v/s Phytoremediation (TIBTECH, 13, 1995)

Contaminants	Conventional Technology	Phytoremediation
Water soluble/ volatile compounds	\$10-100 per m ³ soil	\$ 0.02-1.00 per m ³ soil (\$200-10,000 per
Compounds requiring land- filling or low temp. thermal treatments	\$ 60-300 per m ³ soil	hectare) of cropping
Materials requiring special land-filling or high temp. thermal treatment	\$ 200-700 per m ³ soil	
Incineration	\$ 100 per m ³ soil	
Radionucleides	\$ 1000-3000 per m ³ soil	

Benefits

- Economically feasible
 - Socially desirable
 - Environment friendly
 - Improves soil health
 - Effective

Terrestrial Hyperaccumulators (Brooks, 1998)

Plant	Metal	% metal in shoot (DW)
Thlaspi caerulescens	Zn, Cd	>2% Zn, >0.1% Cd,
Thlaspi spp.	Zn	>2%
Cardaminopsis hallerii	Zn	>1%
Brassica spp.	Se	
Astragalus spp.	Se	0.1-1%
Atriplex spp.	Se	
Thlaspi rotundifolium	Pb	<1% (~0.8%)
Aelloanthus subacaulis	Cu	1.3%
Haemaniastrum spp.	Со	Up to 1 %
Brake fern	As	>1.5%

Sesbania drummondii

- A high biomass plant
- Common name: Rattlebox
- Native to Southeastern U.S.

Sesbania drummondii & Lead

Demonstrated as lead hyperaccumulator

- Tolerates up to 1,000 ppm in hydroponic solution
- Accumulated >4% (DW) Pb in shoots in hydroponic conditions
- Roots showed 6% (DW) accumulation
- EDTA and low pH increased accumulation further

(EST 36, 4676-4680, 2002).

Sesbania in soil supplemented with Pb

Sesbania in soil supplemented with Pb

Estimated total Pb removed from soil by several plants

(Ruley 2004)

Species	Soil Amendments	Soil Pb (mg/kg)	Shoot Pb (%)	Biomass (t/ha/yr)	Est. total Pb extr. (kg/ha/yr)	Source
Zea mays	5.8 mmol/kg HEDTA	2500	1.06	5-6	53-64	Huang et al. 1997
Pisum sativum	1.34 g/kg EDTA	2450	0.897	3-4	27-36	Huang et al. 1997
Sesbania drummondii	10 mmol/kg EDTA 100 mg/kg EDTA + 10 mg/kg IAA	7500 500	0.42	10-15 10-15	43-63	Ruley et al. Unpublished
Brassica juncea	10 mmol/kg EDTA	600	1.6	1-1.5	16-24	Blaylock et al. 1997
Triticum aestivum	5 mmol/kg EDTA+5 mmol/kg acetic acid	2000	0.92	2.5	23	Begonia et al. 2002

EM of Sesbania root cells

(Sahi et al., ES & T 36, 4676-4680, 2002)

Pb Transport

- Transport of Pb via different cell types (SEM)
- Pb nanoparticles in intercellular spaces, cell membranes and cell walls

Biotransformation of Metals (Using XAS Technology)

Types of XAS

- XANES (X-ray absorption near edge structure)
 - determines the oxidation state and atomic geometry of a bound metal.
- EXAFS (Extended X-ray absorption fine structure) – traces the ligand involved in metal binding by measuring the distance from X-rayabsorbing atom to next nearest atom.

XANES Spectra of Sesbania

(ET & C 23, 2068, 2004)

A) L_{III} XANES of Pb-laden plant samples, lead(II) nitrate, and lead(II) acetate. LIII XANES of lead model compounds lead(II) sulfide, lead(II) sulfate, and lead(IV) oxide. **B)**

XANES and EXAFS data of Pb-treated Sesbania

(Environ. Toxicol. Chem. 23, 2068-2073, 2004)

Samples	Pb(NO ₃) ₂	PbSO ₄	Pb metal	PbS	Pb
-	%	%	%	%	acetate %
					/0
Leaves	7.6	25.8	0	14.2	52.4
Roots	10.1	0	8.8	20.2	60.9

Identification of lead responsive genes

Experimental Design

Suppression subtraction hybridization (SSH)

- Based on the technique called suppression PCR
- Compare two populations of mRNA
- Obtain clones of genes that are expressed in one population but not in the other

Sequencing results for Pb samples

- 63 clones corresponds to unigenes
- 49 (78 %) identified as segments of cDNAs contained in GenBank database
- 14 (22 %) were unknown (no similarity)
- Clone # 7 exhibited homology to type 2 metallothionein sequences

Clone	Accession number	Length (bp)	Homology ^a	E-value
SSH-1	DQ465754	183	Acanthopanax sessiliflorus cDNA library Eleutherococcus sessiliflorus cDNA, mRNA sequence (CF923918)	0.0
SSH-2	DQ465755	293	Apple_EST_Mdas Malus x domestica cDNA similar to dbj BAB33421.1 putative senescence-associated protein [Pisum sativum], mRNA sequence (DR993778)	1e ⁻¹³⁹
SSH-3	DQ465756	282	CabSau Flower Stage 12 (FLOu0012) Vitis vinifera cDNA clone VVI101F09 5, mRNA sequence (DT015551)	0.0
SSH-4	DQ465757	666	Cold stressed Glycine clandestina SSH cDNA clone Gc02 03a05, mRNA sequence (BG838800)	0.0
SSH-5	DQ465758	569	Phaseolus vulgaris seedling EST Library inoculated with anthracnose- PVEPSE3029E14 5', mRNA sequence(CB543340)	0.0
SSH-6	DQ465759	565	Phaseolus vulgaris seedling EST Library inoculated with anthracnose-cDNA clone PVEPSE3030N16 5', mRNA sequence (CB543682)	0.0
SSH-7	DQ465760	414	Type 2 Metallothionein-Cytochrome P450 like_TBP [Citrullus lanatus] (AB182926)	0.0
SSH-8	DQ465761	620	Cytochrome P450 like TBP [Nicotiana tabacum] (BAA10929)	0.0
SSH-9	DQ465762	313	Glycine max cDNA clone Gm-c1086-27 5' similar to CYTOCHROME P450 LIKE TBP mRNA sequence (BM091724)	1e ⁻¹⁷⁴
SSH-10	DQ465763	366	Glycine max cDNA, mRNA sequence (BE660497)	0.0
SSH-11	DQ465764	478	Glycine max cDNA, mRNA sequence (BU927378)	0.0
SSH-12	DQ465765	692	Glycine soja cDNA clone SOYBEAN CLONE ID: Gm-c1056-3170 5', mRNA sequence (CA799399)	0.0
SSH-13	DQ465766	739	Glycine max cold stressed leaves cDNA clone Gm01 16d09, mRNA sequence (BG839363)	0.0
	DQ465767		Glycine max cold stressed leaves cDNA clone Gm01 17a09, mRNA sequence	0.0
SSH-14		674	(BG839403)	
SSH-15	DQ465768	471	Gmax SC Glycine max cDNA, mRNA sequence (BE660497)	0.0
SSH-16	DQ465769	875	Gossypium hirsutum cDNA clone GH_CHX12C18 3', mRNA sequence (DT462491)	0.0
SSH-17	DQ465770	840	hemolysin [Acanthamoeba polyphaga] (AAA58585)	0.0
SSH-18	DQ465771	666	Heterobasidion annosum - Scots pine infection stage (HAGE) subtraction cDNA clone hage001aD09, mRNA (BQ789710)	2e ⁻⁸⁵
SSH-19	DQ465772	295	Leafy spurge subtractive cDNA libraries Euphorbia esula cDNA clone RTP5O15 5', mRNA sequence (DT639472)	1e ⁻¹³⁸
SSH-20	DQ465773	633	Lotus japonicus nodule library 5 and 7 week-old Lotus corniculatus var. japonicus cDNA 5', mRNA sequence (AW720640)	0.0
SSH-21	DQ465774	299	Medicago truncatula cDNA clone MtTA01F19S6, mRNA sequence (AJ847433)	1e ⁻¹⁴⁹
SSH-22	DQ465775	341	Medicago truncatula cDNA clone MtTA09L24S6, mRNA sequence (AJ847823)	1e ⁻¹⁷⁷
SSH-23	DQ465776	522	Methyl Jasmonate-Elicited mRNA sequence from Root Cell Suspension Culture Medicago truncatula (CX533136)	0.0
SSH-24	DQ465777	137	Mimulus guttatus cDNA clone 0048P0008Z, mRNA sequence (CV515336)	9e ⁻⁴³
SSH-25	DQ465778	314	Phaseolus vulgaris leaf EST library cDNA clone PV_GEa0013C_C03.b1 5', mRNA sequence (CV530371)	1e ⁻¹⁶⁵
SSH-26	DQ465779	628	Phaseolus vulgaris leaf EST library cDNA clone PV_GEa0015C_G10.b1 5', mRNA sequence (CV531021)	0.0
SSH-27	DQ465780	229	Populus trichocarpa cDNA clone WS02553_I06 3', mRNA sequence (DT493138)	1e ⁻¹²⁷
SSH-28	DQ465781	899	Potato abiotic stress cDNA library Solanum tuberosum cDNA clone POAD792 5' end, mRNA sequence (CK272883)	0.0
SSH-29	DQ465782	900	Water stressed gnntDrNS01 32 Glycine max cDNA 3', mRNA sequence (CX711410)	0.0

SSH-30	DQ465783	565	Probable cytochrome P450 monooxygenase - maize (fragment) (T02955)	0.0
SSH-31	DQ465784	666	Putative ACC synthase/oxidase gene (BAB33421)	0.0
SSH-32	DQ465785	255	rRNA promoter binding protein [Rattus norvegicus] (NM147136)	1e ⁻¹⁴³
	DQ465786		Sesbania rostrata root primordia cDNA clone SSH-10, mRNA sequence	0.0
SSH-33		657	(AJ301742)	
	DQ465787		Subtracted cDNA library of maize inbred line H95-Rp1-Kr1N Zea mays cDNA	1e ⁻²⁶
SSH-34		162	clone Kr1N-4_D09, mRNA sequence (CA452627)	
SSH-35	DQ465788	531	Unknown protein (Schistosoma japonicum) (AAX30301)	0.0
	DQ465789		Water stressed gmrtDrNS01_28 Glycine max cDNA 3', mRNA sequence	0.0
SSH-36		889	(CX711160)	
	DQ465790		Water stressed gmrtDrNS01_30 Glycine max cDNA 3', mRNA sequence	0.0
SSH-37		874	(CX548993)	
	DQ465791		Water stressed gmrtDrNS01_31 Glycine max cDNA 3', mRNA sequence	0.0
SSH-38		446	(CX707998)	
SSH-39	DQ465792	289	Unnamed protein product [Kluyveromyces lactis NRRL Y-1140] (CAH00932)	5e ⁻⁹¹
	DQ465793		CYTOCHROME P450 monooxygenase (EC 1.14.14.1) - common tobacco (0.0
SSH-40	DO 105701	648		
SSH-41	DQ465794	881	Hypothetical protein [Oryza sativa (japonica cultivar-group)] (BAD46202)	0.0
SSH-42	DQ465795	357	26S ribosomal protein	0.0
CCTT 42	DQ465796	200	Hypothetical protein GLP_748_1200_211 [Giardia lamblia ATCC 50803]	1e ⁻¹³⁷
SSH-43	DO 405707	288	(XP767406)	-162
SSH-44	DQ465797	371	Hypothetical protein UM05244.1 [Ustilago maydis521] (XP761391)	1e ⁻¹⁶²
SSH-45	DQ465798	293	Unknown protein	1e ⁻¹⁷³
SSH-46	DQ465799	286	Unknown protein	1e ⁻¹⁶⁵
SSH-47	DQ465800	330	Unknown protein	1e ⁻¹⁶² 1e ⁻¹⁵³
SSH-48	DQ465801	285	Unknown protein	1e ⁻¹⁶⁷
SSH-49	DQ465802	292	Unknown protein	le "
SSH-50	DQ465803	178	No homology ^b	
SSH-51	DQ465804	499	No homology	
SSH-52	DQ465805	404	No homology	
SSH-53 SSH-54	DQ465806 DQ465807	472 478	No homology	
			No homology	
SSH-55 SSH-56	DQ465808	561 578	No homology No homology	
SSH-57	DQ465809 DQ465810		65	
SSH-58	DQ465811	646 377	No homology	+
SSH-59	DQ465812	547	No homology No homology	
SSH-60	DQ465813	293	No homology No homology	
SSH-61	DQ465814	352	No homology No homology	
SSH-62	DQ465815	368	No homology No homology	
SSH-63	DQ465816	630	No homology No homology	
			ound in genome, EST, and protein database.	

Northern blot analysis (Pb)

(Srivastava et al. Planta 2007)

Cont	rol	Pb treated	
Shoot	Root	Shoot	Root

Water-stress induced gene (Clone # 29, 36, 37, 38)

Cold stress-induced gene (Clone # 4, 13, 14)

ACC synthase/oxidase gene (Clone # 31)

Abiotic stress-induced gene (Clone # 28)

Metallothionein gene (Clone #7)

EtBr stained RNA

Conclusion

- Phytoremediation is a slow process
- Sesbania is effective for sites with shallow contaminated soils.
- Lead accumulated in form of nanoparticles.
- Sesbania transforms toxic compounds
- A type II metallothionein gene identified may be involved in heavy metal detoxification
- Interdisciplinary approach

ACKNOWLEDGEMENTS

Collaborators

Dr. J. Andersland, WKU

Dr. K. Raghothama, Purdue U

Dr. J. Gardea-Torresdey, UTEP

Post-Doctoral Fellows

Dr. N. Sharma

Dr. M. Israr

Graduate Students

T. Ruley

A. Srivastava

Undergraduate Students

N. Bryant

D. Starnes

Financial Support

NSF-EPSCoR

Ogden College

Thank you

Prerequisites for Phytoremediation

Hyperaccumulators

- Accumulate 100 times more metals than the nonaccumulators
 - Conc. Criterion (% Shoot DW)
 Cd (>0.01), Co, Cu, Cr and Pb (>0.1),
 Ni and Zn (>1), Hg (0.001)
- Should have good biomass

EXAFS Spectra of Sesbania

Phytoremediation approaches

- 1. **Phytoextraction**: to remove contaminants directly from soil/water
- 2. **Phytostabilization**: use of vegetation and soil amendments to reduce contaminant availability and movement.
- 3. **Rhizofiltration**: plant root system is directed to extract pollutants from water bodies
- 4. **Phytomining**: for extraction and concentration of valuable metals

Antioxidant Reactions & metal Stress in Sesbania

- Generally metal exposure triggers an increase in activity of antioxidant enzymes.
 - Superoxide dismutase (SOD) catalyze dismutation of superoxide radicals to hydrogen peroxide & oxygen
 - Catalase (CAT) catalyzes decomposition of hydrogen peroxide to water and oxygen
 - Ascorbate deroxidase (APX) detoxifies hydrogen peroxide to water using ascorbate as substrate
 - Glutathione reductase (GR) reduces oxidized glutathione (GSSG) to reduced glutathione (GHS)
 - maintains high GHS/GSSH to sustain role of GHS as antioxidant
 - also incorporating into phytochelatins
 - GSH also function as free radical scavenger

Superoxide dismutase (SOD)

Ascorbate Peroxidase (APX)

Glutathione content

Antioxidant Reactions and Pb Stress in Sesbania drummondii

(Plant Physiol. Biochem. 42, 899-906, 2004)

- Generally Pb exposure triggers an increase in activity of antioxidant enzymes.
- Significant Increased activity of these enzymes not observed in S. drummondii up to 1,000 mg/L Pb(NO₃)₂.
- Either Sesbania drummondii does not experience stress at these levels of Pb treatment, or antioxidant enzyme activities are not an indicator of stress in this plant.